Asymptotic Notation & Master Method

Introduction to different cases of Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee that the algorithm would not run longer, no matter what the inputs are
- Best case
 - Provides a lower bound on running time
 - Input is the one for which the algorithm runs the fastest

Lower Bound ≤ *Running Time* ≤ *Upper Bound*

- Average case
 - Provides a prediction about the running time
 - Assumes that the input is random

Asymptotic Analysis

- To compare two algorithms with running times f(n) and g(n), we need a rough measure that characterizes how fast each function grows.
- *<u>Hint:</u>* use rate of growth
- Compare functions in the limit, that is, asymptotically!

(i.e., for large values of *n*)

Rate of Growth

• Consider the example of buying *elephants* and *goldfish:*

Cost: cost_of_elephants + cost_of_goldfish **Cost** ~ cost_of_elephants (approximation)

• The low order terms in a function are relatively insignificant for **large** *n*

 $n^4 + 100n^2 + 10n + 50 \sim n^4$

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same **rate of growth**

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: f(n) "≤" g(n)
- Ω notation: asymptotic "greater than":
 - f(n) = Ω (g(n)) implies: f(n) "≥" g(n)
- Θ notation: asymptotic "equality":
 - $f(n) = \Theta(g(n))$ implies: f(n) = g(n)

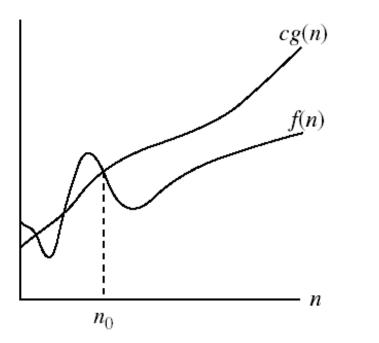
Big-O Notation

- We say f_A(n)=30n+8 is order n, or O (n) It is, at most, roughly proportional to n.
- $f_{\rm B}(n)=n^2+1$ is order n^2 , or O(n^2). It is, at most, roughly proportional to n^2 .
- In general, any O(n²) function is fastergrowing than any O(n) function.

Asymptotic notations

• O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that}$ $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$



g(n) is an *asymptotic upper bound* for f(n).

Examples

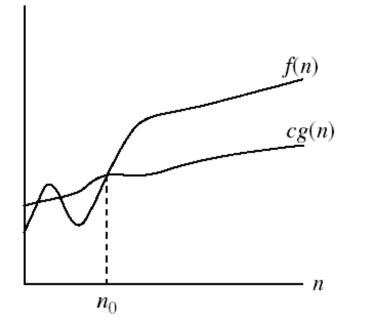
- $2n^2 = O(n^3)$: $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1$ and $n_0 = 2$
- $n^2 = O(n^2)$: $n^2 \leq cn^2 \Rightarrow c \geq 1 \Rightarrow c = 1$ and $n_0 = 1$
- $1000n^2 + 1000n = O(n^2)$:

1000n²+1000n \leq 1000n²+ n² =1001n² \Rightarrow c=1001 and n₀ = 1000

-
$$n = O(n^2)$$
: $n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

Asymptotic notations (cont.)

- Ω notation
- $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$



 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Examples

 $- 5n^2 = \Omega(n)$

 \exists c, n_0 such that: $0 \le cn \le 5n^2 \Rightarrow cn \le 5n^2 \Rightarrow c = 1$ and $n_0 = 1$

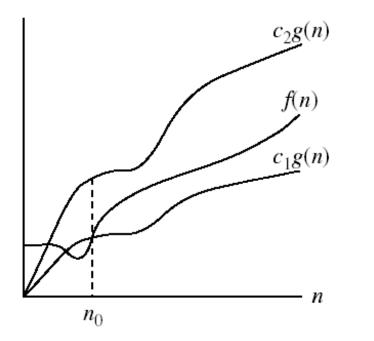
∃ c, n₀ such that: $0 \le cn^2 \le 100n + 5$ 100n + 5 ≤ 100n + 5n (∀ n ≥ 1) = 105n $cn^2 \le 105n \Rightarrow n(cn - 105) \le 0$ Since n is positive ⇒ cn - 105 ≤ 0 ⇒ n ≤ 105/c ⇒ contradiction: n cannot be smaller than a constant

-
$$n = \Omega(2n), n^3 = \Omega(n^2), n = \Omega(logn)$$

Asymptotic notations (cont.)

• Θ -notation

 $\Theta(g(n)) = \{ f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$



 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an *asymptotically tight bound* for f(n).

Examples

$$- n^2/2 - n/2 = \Theta(n^2)$$

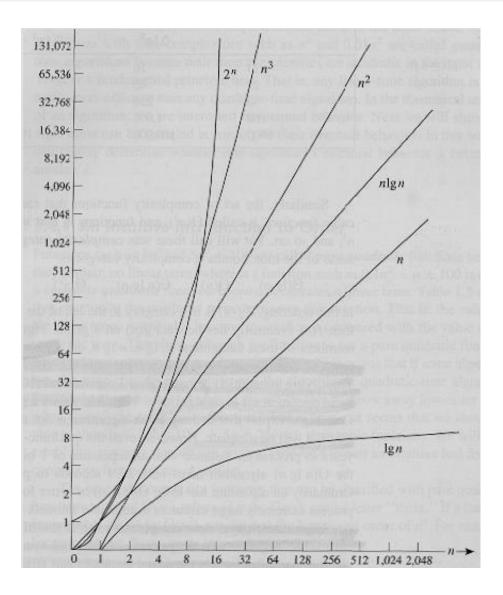
- $\frac{1}{2} n^2 \frac{1}{2} n \le \frac{1}{2} n^2 \forall n \ge 0 \implies c_2 = \frac{1}{2}$
- $\frac{1}{2} n^2 \frac{1}{2} n \ge \frac{1}{2} n^2 \frac{1}{2} n * \frac{1}{2} n (\forall n \ge 2) = \frac{1}{4} n^2$

 \Rightarrow C₁= ¹/₄

- $n \neq \Theta(n^2)$: $c_1 n^2 \leq n \leq c_2 n^2$

 \Rightarrow only holds for: n $\leq 1/C_1$

Common orders of magnitude



Master Method

- for T(n) = aT(n/b)+f(n), n/b may be $\lceil n/b \rceil$ or $\lfloor n/b \rfloor$. where $a \ge 1$, b>1 are positive integers, f(n) be a non-negative function.
- 1. If $f(n) = O(n^{\log_b a_{-\varepsilon}})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- 3. If $f(n)=\Omega(n^{\log_b a_{+\varepsilon}})$ for some $\varepsilon>0$, and if $af(n/b) \le cf(n)$ for some c<1 and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Implications of Master Theorem

- Comparison between f(n) and $n^{\log_b a}$ (<,=,>)
- Must be asymptotically smaller (or larger) by a polynomial, i.e., n^ε for some ε>0.
- In case 3, the "regularity" must be satisfied, i.e., af(n/b) ≤cf(n) for some c<1.
- There are gaps
 - between 1 and 2: f(n) is smaller than $n^{\log_b a}$, but not polynomially smaller.
 - between 2 and 3: f(n) is larger than n^{log}b^a, but not polynomially larger.
 - in case 3, if the "regularity" fails to hold.

Application of Master Theorem

- T(n) = 9T(n/3)+n;
 - *− a*=9,*b*=3, *f*(*n*) =*n*
 - $n^{\log_{b} a} = n^{\log_{3} 9} = \Theta (n^{2})$
 - $f(n)=O(n^{\log_3 9} \cdot \epsilon)$ for $\epsilon=1$
 - By case 1, $T(n) = \Theta(n^2)$.
- T(n) = T(2n/3) + 1
 - a=1,b=3/2, f(n) =1
 - $n^{\log_b a} = n^{\log_{3/2} 1} = \Theta (n^0) = \Theta (1)$
 - By case 2, $T(n) = \Theta(\lg n)$.

Application of Master Theorem

- $T(n) = 3T(n/4) + n \lg n;$
 - $-a=3,b=4, f(n)=n \log n$
 - $n^{\log_b a} = n^{\log_4 3} = \Theta (n^{0.793})$
 - $f(n) = Ω(n^{\log_4 3+ε})$ for ε≈0.2
 - Moreover, for large n, the "regularity" holds for c=3/4.
 - $af(n/b) = 3(n/4) \lg (n/4) \le (3/4) n \lg n = cf(n)$
 - By case 3, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$.

Scope of research: To find the solution for Exception to Master Theorem

- $T(n) = 2T(n/2) + n \lg n;$
 - $-a=2,b=2, f(n) = n \lg n$
 - $n^{\log_b a} = n^{\log_2 2} = \Theta (n)$
 - f(n) is asymptotically larger than $n^{\log_b a}$, but not polynomially larger because
 - $f(n)/n^{\log_b a} = \log n$, which is asymptotically less than n^{ϵ} for any $\epsilon > 0^{\cdot}$
 - Therefore, this is a gap between 2 and 3.

Assignment

- What is master method?
- How to find Big-O notation for given problem